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Usage of big data

“qvr Characteri%s@s of big data: . \'Q . \9
® Volu '%e amount of data. ”’§'~\t
U Valu(@ value of data. “3’@
.Q &ity: fast data processing. ”\Q«
iety: different t f datan
\(b ariety: different types o sa\',t& \{b




Newsvendor problem
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Newsvendor problem
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R@Q)nventional Newsvendor p;\ ’}n \(é\
’ @ iy EC(o) = EIC( D)) &

where ‘%©
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T\'@%timal decision: \(& \{b




Data-driven Newsvendor
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e Average Approximation E
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Data-driven Newsvendor
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S%é?le Average Approximations@? ): \"2}
( (n

ith historical demand data d(n) = [d1,ds, ..., d,].)
O . D O
@%; d(m) =+ 3 [b(d, —@*%\h (0-d)*]. (5A4) @%\
The o@::}al decision: «K% ’\“3’
X q" :’ﬁ,(?{y L Fu(y) > b-l——h}’ -
>
which is the [@%th largest demand observ; i Q ,_*x\\',
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Asymptotic convergence: As the number of data points N — oo, both the
optimal value gs%and the optimal solution sts@converge to the optimal ValuQ§k
and the opti olution x* almost surely. .Tx
Tractabi For many cost functions c( and sets X, finding the op@

value OK’;% an optimal solution SAA &%mputa‘cionally tractable. @g\
S O
4 4 N4

But we haven’t cgsidered the “big” data yet.
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The Feature-based Newsvonder

© et EICP: DGO) | %, ©
a)e2{a 2~
Whe@is the feature, and the decg@)is a map from the feature @ to the




Empirical Risk Minimization

) o) S
T%&A approach to solving th?é‘c)vvsvendor problem with featgzz,é\ data is
b\

n

it oy R = b 401, OV

R\ I\
where R @ed the empirical risk of fl{%@i q with respect to the dat Sh.-
Prob@‘- function class 2 7 @ \

o O

2




Empirical Risk Minimization

) o) S
Tb&&ﬂ approach to solving th?ééwsvendor problem with featgzz,é\ data is
b\

n

e RN =5 2 0 g ) =] O

1

where R @ed the empirical risk of fl{%@i q with respect to the dat Sh.-
Prob@n function class 2 ? @ @\
r Decision Rule! (§\ <\
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ERM algorithm 1




ERM algorithm 2
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Ad(k@gularlzatlon term: v {\Q ‘
P e @Q( )3 5n) + Mlally = 111 > [b (di — ¢ (x:))" +hlq(xi) di)*]\gkllqlli
. \ =1 ‘\
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Kernel Optimization

pation of the future given ’c&te observation x.

\ \) \)
ictive prescription: Any f@tlon q(z) that prescribes a d@gmon in
antici N

S S

n

4 ) R 4
@ q(x) = arg mm@,i(X)C (g, d;) @
N

4

\) \) \)
bas % Nadaraya-Watson kernel @sion @
\"’Zﬁk X0 "Z;(\

n
; K (301 — ;) O lad,
min R (q, Snaxn—l—l) — min Zz:l (X +1 X )C d )

‘?%{\'} q>0 Z%’w (Xnt1 —Xi) ) \\>
where K, @kernel function with ba 'é’% w. "*‘x
(.%@ .K& .‘55@1

7

& :‘;,
- a\d
SPO: Big data newsvendor




Kernel Regression

N N
General regfas‘k’on: Given past data (1, y1, \9, (Zn,Yn), one wants to esi@t’e
e

the conditj "i”' pectation function (CE |X];
In statis%&ernel regression is a non-p tric technique to estimate
able. The objective is to finda&, non-linear

coma expectation of a random ¥
rel etween a pair of random v@; les X and Y. (\
N4 0 N4
>
A N R
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Kernel regression

\ | \)
(\% # R code ”\Q {\

\(b install. packages("m&_(b \{2}
library(np) # non parametric library \
data(eps71) ) X\
a cps71) ~§:\\ @g\\

KQ;‘ <- npreg(logwage”age)g{*% @:\“3’
@Q plot(m, plot.error t@{z\hodﬂasymptotic", {bo
X plot.errors. st;\é—"band“ N
yl =c(11, 15.2))
@(age, logwage, cex=. @ @+
~ A\~
A e\ a\

SPO: Big data newsvendor



Typical kernel functions

S ) | ) B
\@%mform kernel: \"{5\ . \{é\
S K(u) = §H(Ilu‘!§§ 1) N
. Gaussi@&rnel: . . ,*?_ ||u||%) (@)&‘x
. <§% e ’ <§’s
> > >
S bt X
Kl = KLY R
where w is ’&%andvvldth of the kernel. ”‘i“\t ~§:\\'
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NV Kernel Optimization

5 S

. & N4

The optimal feature-based newsvendor decision ¥ obtained by solving (NV-KO) is

given by
N : Yoy kill(ds < q) b
R i

where ki = Ky(Xn+1 — %) and K, (+) is a kernel function with bandwidth w. In
other words, we can find G* by ranking the past demand in increasing order and
choosing the smallest value at which the inequality in (1) is satisfied.

© © ©f
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S )
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Value of feature information

\ O \
O & N

’}Wo population example:
Demand model \>

@'&
where ‘S&nd D1 are nonnegative co us random variables such & the
cor ding critical newsvendm;& es g5 and gj follow ¢ < ¢j
\%;bhave n historical observatiOI;é‘.' [(z1,d1),..., (zn,dp)], of Wh?C\l ng = npo when
z=0and n; = no when x = 1 (assume rounding effects are negligible). \
X N R

4 4 N

3 N
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Value of feature information

We can show

i.e. the finite-sample decision of the feature-based decision is biased by at most
O(logn;/n;),i = 0,1, and

lim ¢, 2 Fy'(r)=:¢q;, i=0,1

n—oo

i.e. the feature-based decision is asymptotically optimal, correctly identifying the
case when © =0 or 1 as the number of observations goes to infinity.

S | ) N
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Value of feature information

Two @ulation example: C’}s&

o)
A O
Theorem 2 (Asymptotic (Sub)Optimality of (SAA)).

The finite-sample bias of the SAA decision is given by

n

‘E [quAA] (Fmix)—l(r)‘ S 19) (logn>

we also have

£ (444 - )| = (™)™ 0 - £ '] + 0 (<E2) = o)

B (6} - 24| = [F o) - () )]+ 0 (<57 = o

n

That is, on average, if x = 0 in the next decision period, the SAA decision orders
too much, and if x =1, the SAA decision orders too little. .




Value of feature information

< < <
(‘Q’ {\Q Q
Iﬁ!’(?ear demand example: \(b
Demand model Q \
RN 2 QO
w D|(X =x) te )

where e&ﬁ%ndependen‘c of the (randor&’ﬁ}gture vector X, is continuous with
pro ity density function fe(:). A3

& without the feature infor@ n only has access to past nd data:
D= {d,,...,d,}; and a DM who has both past feature and demand data has the

information: D@(xl, di), ..., (Xp,dy). ) \9 ,\\9»

AN AN
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Value of feature information

Linea{t}ﬁi\émand example:
4

3
O
Under the linear demand model, given features X = X,

) 5 Q. (1
" “\b+h

Q. (Hih) + 6TE[X]

)+]Ex[ D | X]]

and

b

P Q. (5 ) + TR =)

as n tends to infinity.

- ——— 3

Runyu Tang SPO: Big data newsvendor



4

)

) )

Theorem 5 (Out-of-Sample Performance of (NV- ERM1
Denote the true optimal solution by q* = q"(Xu+1) and the
decision resulting from (NV-ERM1) by § = §(x4+1). Then,
with probability at least 1 — 6 over the random draw of the
sample S,, where each element of S, is drawn iid from an
unknown distribution on ¥ X D, and for all n>3,

)
IRtrue(q ) Rm(q' n)l < (b \% h)D bAR

4(b V h)
+( b AR p+1)
w/iogn

nl/@+p/2)’

14

n \

log(2/6)
2n

+(b VK

where K = _[22+P) ! ,and Ay = min_fe(t).
te[D,D]

@) (1-2¥eR)y,

W\
<Y

O
@
~

he first term: generahzamo or.

cales as

£
O(p/+/n), deca
@ exponentially fast in n,@

® The second term: \sample bias.
The rate n~ Y/t ogn is
N

optimal.

O O
N \

" 9
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Bounds

A ) S
Theorem 6 (Out-of-Sample Performance of (NV-ERM2)). {\
Denote the true optimal solution by q" = q"(Xn41), the de-
cision resulting from (NV-ERM1) by § = ﬁ(xnﬂ), and the . .
decision resulfing from (NV-ERM2) by 4, = f, (ue1). ® The first term: generalization error.
Then, with probability at least 1 — & over the random draw of \@?ﬂes as O(p/( )\\/_ A= Q( ,@2)

the sample S,,, where each element of S, is drawn iid from an :
unknown distribution on XD, and for all n>3, a gOOd Startlng pOlIlt, bec 1t

. gives the same error rate M-1.
lRtme(q*)_IimEZA\iir;)l 2 :% ® The second term: in—s@ e decision
S(VHD|=— S5 ) resulting from reg tion — the
. (Z(b VX 1) 10g2/5) bias res.ultling‘frﬂp aving perturbed
AD 2n the optimization ‘problem away from
+(bVhEp|x,.,[15, - 411 ) @ true problem of interest. ) \>
+(b vh)K%, ..5‘ he third term: finite-sam as.

@+p)  (1-2/G))py te[D,D]
3

where K = [ ;, and Ay = min _f.(t). *g\,,/’ &\w«{}“

N\
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Bounds

K4 A \
Theorem 7 (Out-of-Sample Performance of (NV-KO)). } N\
Denote the true optimal solution by q* = q"(Xs4+1), the {8
decision resulting from (NV-ERM1) by § = §(Xn+1), and \

the decision to (NV-KO) with the Gaussian kernel by

° . . .
=3 (Xn+1 en, with probability at least over the
¥ = 0" Go). Th 1 probability at least 1 5 . The first term: generahzatlon error.

random draw of the sample S, where each element of S,, is s les as (p / (Tw( )
drawn iid from an unknown distribution on ¥ XD, and for ~§... an be controlled by the \)dth
In>3, .
an= R @1 w. Setting w = O(/p) n error
I Rirue(") = Rin(q"; 50)| :% of O(1/4/n) which is %Qod as
<(VvhD 2bvh) 1 ) demand without fe S.

bAR 1+ (n—1)ru(p)
. 4V o \/W ® The second tern\‘.’:&he bias resulting
1/n+(1—1/n)r,(p) 2n from optimizing with a scalar

V ision. >
+ OV HEpx,. 1511+ (hvh)Knl,‘(‘;ﬁ,’fz) \? R\
”‘&‘ he third term: finite-sa S.
wherer,(p) = exp(~2X2, p/w?), w is the kernel bandwidth, @
_ [o(8+3p) 1 . . - \X
K=\ ) Gy M= RSO .
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py/log(1/0) \P\’k/logn
\/_ ”&"'\ n2+p/2

sy S 0@’\!
(

*.
(@}\f =5 ED""“&“&@j -

<5b \/log(1/6) \/logn

Tw (p) ﬁ Qn 2+p/2

S
©
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+ED|xn+1 |q - q| >1- 0




How to prove such bounds?

& T4 T4
“LEMMA EC.2. Let §(S,) be an tn-sample decision with uniform stability o, with respect to a loss
\ function ¢ such that 0 < £(§(S,),z) <M, for all z€ Z and all sets S, of size n. Then for anyn>1
and any 8 € (0,1), the following bound holds with probability at least 1 — & over the random draw of
the sample S,,:

://(/

log(2/4)
2n

UnlfO@S‘%ablhty 'in {\“%V

5@ DeFINITION EC.1 (UNIFORM STABILITY, BOUSQUET AND ELISSEEFF (2002) DEF 6 PP. 504).

|Rtrue(‘j(sn)) - R(Q(Sn)y Sn)l S QQn + (4nan + M)

A symmetric algorithm A has uniform stability a with respect to a loss function ¢ if for all S,, € Z»

and for all 4 € {1,...,n},
I£(As,.,) — (A gy, ) < (EC5)

Furthermore, an algorithm is uniformly stable if a=an <0(1/n).
AN ? B\ :
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How to prove such bounds?

(bAR) n @”}"\
2 2
- Xmax2()l\7\/h) 2, “3’

D(bVh)? §
° Ak = ((b/\\/h)) 1+(n1—1)rw’ W@“’ = exp(_2X12nax/w2)' 0@

BQ%quet O, Elisseeff A (2002) Stabilf&){&-d generalization. J. Mach.Leam@. 2(Mar):499-526.

N
S

N A\
s@ i,;@ ‘SS@‘

SPO: Big data newsvendor



Numerical Experiments

\ \
S ) S
B&l source: the emergency roo}k.(%f a large teaching hospital 13@6 United
Kingdom from Julz 2008 to June 2009.

® Optimal s \éﬁg levels of nurses for a hogg@ emergency room. s\\\,
® Agen rse v.s. regular nurse. @,

4
® Fe @

&the first set being the day of J;\ eek, time of the day, and m l@er of days of
past demands
\(b » the second set being the H&set plus the sample average oﬁ&t demands and
the differences in the order statistics of past_demands. (operational statistics
N
D
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Numerical Experiments

Rur

yu Ta

Table 3. A Summary of Results

Calibrated Avg. computation time % savings relative to Annual cost savings
Method parameter (per iteration) Mean (95 % CI) SAA-day rel. to SAA-day
1a. SAA-day — 140s 1.523 (+ 0.109) — —
1b. Cluster + SAA — 149s 1.424 (+ 0.102) — —
2a. Ker-0 w =0.08 0.0444 s 1.208 (+ 0.146) 20.7% £39,915 ($63,864)
2b. Ker-OS w=162 0.0494 s 1.156 (+ 0.140) 24.1% £46,555 ($74,488)
3a. NV-0 12 days 325s 1.326 (+ 0.100) 12.9% £24,909 ($39,854)
3b. NV-OS Four days 360 s 1.463 (+ 0.144) — —
4a. NVregl 1x107 845s 1.336 (+ 0.100) — —
4b. NVregl-OS 1x1077 114s 1.174 (+ 0.113) 22.9% £44,219 ($70,750)
5a. NVreg2 5x107 796's 1.336 (+ 0.110) — —
5b. NVreg2-OS 1x107 107 s 1.215 (+ 0.111) 20.2% £39,065 ($62,503)
6a. SEO-0 One day 108s 1.279 (+ 0.099) 16.0% £30,952 ($49,523)
6b. SEO-OS Six days 16.1s 12.57 (+ 10.63) — —
7a. SEOreg1 5x107! 221s 1.417 (+ 0.106) — —
7b. SEOregl-OS 5x107% 259 11.95 (+ 6.00) — —
8a. SEOreg2 1x107! 26.6 s 1.392 (+ 0.105) — —
8b. SEOreg2-OS 5x107° 27.1s 12.57 (+ 10.63) — —
9. Scarf 12 days 20.8 s 1.593 (+ 0.114) - -

Notes. We assume the hourly wage of an agency nurse is 2.5 times that of a regular nurse. We report the calibrated parameter (if any), the
average computational time taken to solve one problem instance, and the mean and the 95% confidence interval for the out-of-sample staffing
cost in normalized units. In the last column, we report the annual cost savings of the method relative to SAA-day in instances in which there is
a statistically significant net cost saving, assuming a regular nurse salary of £25,000 (which is the Band 4 nurse salary for the National Health
Service in the United Kingdom in 2014) and standard working hours. A dashed line represents cost differential that is not statistically significant.
Cost savings in USD are also reported, assuming an exchange rate of £1: USD 1.6.
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From predictive to prescriptive analytics

Runyu Tang SPO: Prescriptive Analytics

drest-neighbors (kKNN) regr@o : \)

g O

qr @: arg min Z C(q,d;) \{b

3o Ny O
where N, (398 the neighborhood of the k8ata points that are close to x’\\,

® Jocal li egression: & “&"
3 © &

N n n N
\@Q&SS@) = arg minz kl(f\}(@}c 1- Z kj(z)(2? — xﬁg\;@% —x),0 » C(q,d
i j=1

where Z(z) = Y0, ki(2) (@' — o) (@ )7, ki(2) = (1~ (|l2* ~ 2| /hn (2))*)°1[[2° ~ 2| < hy(2)], >
and hy(x) > 0 is the distance to the k-nearest point from z. Although this form may seem

complicated, it (nearly) corresponds to the simple idea of approximating E [c(z; Y)|X =9;]

locally by a linear function in x



From predictive to prescriptive analytics

SN <
S R
\(§ lassification and regressml\ (CART): \fb

ACART .
\' dy (x) = arg min *gi C(q,d;),
N\ -ro

wher ) is the binning rule impﬁ%@f a regression tree. @

e (o) orests: « \
,zg@ o <2 A
X4 QrEL{F(x) = argminzt;\{, Ri(ad) = Z \, Cl(q,d;),

Ri()y 2=~
Q @R (z%)=R"(x) s\\\,

where @‘@)IS the binning rule 1mph@b§}§he £ tree in a random aﬁ,‘,

: «‘
A ‘*
Runyu Tang SPO: Prescriptive Analytics




From predictive to prescriptive analytics

Figure 1 A regression tree is trained on data {(z', "), ..., (z'°, ¥'°)} and partitions the X data into regions
defined by the leaves. The Y prediction 7i(z) is 7h2;, the average of Y data at the leaf in which X =z ends up.

The implicit binning rule is R(z), which maps z to the identity of the leaf in which it ends up.
z, <5

Implicit binning rule:

Ry={z:2,<5} 22 <1 .
fnl;%(y1+ly4+y5) : R(w) = (_] st.re R])

Ry={z:21>5,2:<1} Ry={z:2:>5,2,>1}
fn2:§(y3+y8+y10) Thzii(y2+y6+y7+y9)

AN AN N
& i Ici
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From predictive to prescriptive analytics

Under some mild conditions, kNN, Kernel Methods, Local Linear Methods are

asymptotic optimal and consistent.

3 ) o
A %1 no firm theoretical resu)%o}n the asymptotic optimality@ e predictive
fﬁvscriptions based on CART arﬁ' F, we have observed them tovConverge

empirically. \
N ‘ X
I\ I\ I\

s@ A&@ \X@i

SPO: Prescriptive Analytics
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riptive analytics

ient’ of prescriptiveness (in theest set):

N (N
p_ i\f"&redPres — TrueOpt \{é\
- SAA — TrueOpt

N Q N
N ical % ts: o \ . \\',
umerica, e‘X%e.’@Ten S ‘ & ‘ \

Figure 9. Performance of Our Prescription over Time

Our prescription Point prediction SAA++ ===== Perfect foresight
) @ (b) - © ©
T AT M ; e W ‘MVV [
Munich, P =0.89 Paris, P =0.90 Waterloo, P =0.85 The Hague, P =0.86
Notes. Vertical dashes indicate major release dates. The vertical axis is shown in terms of the location’s capacity, K;.
; N\ 3 - 3
NG \ :
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Smart “predict, then optimize”

)
Q@Q\extual optimization prq@n \t’b
‘\\'\' mln Elc"q|z @ ) 5\\\>
which is e@en‘c to (by linearity of ex 1on @
@\M <§\"
O
X0 X0

Video: \} . \9 . \\}‘

https:// v&%ﬁﬂ:ube com/watch?v= Hot@kal&ab_channe1=AdamE1€fﬁh>ub
_ o ~ ~ ‘< : . . . - -



https://www.youtube.com/watch?v=Hot26kyykaI&ab_channel=AdamElmachtoub

Smart “predict, then optimize”

o) ) S
Sgéh rd solution approach “ '}ict, then optimize”: (b{\
RS 1. Predict parameters using?% machine learning model. X

® 2. Plug in wictions into optimization mg('@l and solve it. X \9

Key gradi \ & -*’
° 1.N(@‘(downstream) optimizatig@bblem @
Q 3

S
4
® 2. Training data: (z1,c¢1), (x2,¢2),..., (Tn,cn)-

e 3. Hypothe&}bclass: ¢ = f(z).

° 4 Lo \tion: ¢ c).
4 L~@t 1(é,¢) A@

qeS

P((é%\gg(c) :=minec'q. o@

Runyu Tang SPO: Smart predict then optimize



Smart “predict, then optimize”

S S S

>
Plﬁction: Find f* using ERM\
principal:

For common linear &ression (least

X L Y

> v
g@%l(f(xi)’ci)' ,‘3,@}“ mn % ; |5Tﬂc¢,’c\'«{@¥

=1

* $ S
Olﬁgﬁon: Given a new x, ma, 8(\ Optimization: Givepb{}l x, make
de n XS decision N

? 5 s& q( ) ‘s\\'\>~




Smart “predict, then optimize”

) Gh S
SP@I: Minimize decision error@ er than prediction error. {\

lspo(é,c) = ch*(é) — ch* (c).

A _ .
Then the ;@iﬁ@’n part becomes: ) ’*:\\ @
N ngn%%&@‘%@m S
O &
R&ll in big data newsvendor: \(&




Smart “predict, then optimize”

£ &
{Z).(\Ca Figure 1. Geometric Illustration of SPO Loss

Ay,

(b)

D
o

QO
5 A\
Notes. (a) Polyhedral feasible region. (b) Elliptic feasible region. X%

3 \ 7 5
aNd

Runyu Tang SPO: Smart predict then optimize



An example

\ \) \)
Co§§é a shortest-path problem wo nodes, s and t. There &’i& 0 edges
that go from s to ¢, edge 1 and 2. Thus the cost vector ¢ ié\'%o—dimensional.

A C1‘\> .
\g S \g

SO A RN
Our data @s&&)f (x4, ¢;) pairs, and ¢; ar %ated nonlinearly as a fuaié;\\pf

O]

4
QO P .
é AN ¢ AN
£\ N S
SPO: Smart predict then optimize

xZ;.




An example

' 4
A A
Figure 2. Difference Between Prediction and Decision Residuals

(a)

O Edge 1 cost (true) O Edge 1 cost (true)
[J Edge 2 cost (true) [J Edge 2 cost (true)
) Edge 1 cost (pred.)

Q 0 O Edge 1 cost (pred.) o Q
\ 1 [] Edge 2 cost (pred.) I [] Edge 2 cost (pred.)
1 ! l; 1 [m}
c W c
'
: A
: 5 T l
| m} 1
m]
X X
Notes. (a) Prediction residuals. (b) Decision residuals. Pred., prediction.
i N N\
A P y

é

mart predict then optimize



Figure 3. Illustrative Example

K

v . . : ' — ' - - - - — — . -
| O Edge 1 cost (true) 1 ] O Edge 1 cost (true)
I | O Edge 2 cost (true) | 10 ! I O Edge2 cost true) |
: : : —E— Edge 1 cost (LS)
H H N —5— Edge 2 cost (LS)
| o 1 1 a
I | 1 8 1 1 1
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1 o 1 1
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[ I | I 1
I = 1 ]
I I 1
I | I
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1 o 1
| o] 1 |
] |
o008l '
o
o © I
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o
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]
I
I
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then
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An example

< KON KA

] O Edge 1 cost (true) I O Edge 1 cost (true)
0r ] O Edge 2 cost ftrue) | ¥ 10r : O Edge2 cost (true) |
1 Edge 1 cost (SPO) | Edge 1 cost (SPO)
' Edge 2 cost (SPO) - Edge 2 cost (SPO)
1 o I =
8r 1 1 8r I 1
1 I
1 I
1 % I 8
1 I
6F i 1 6+ i 1
1 g I o
1 I
i ° i °
4r i o € 4r i o [
1 o I o
1 o o I o ©
A n . q I o o
2r ig 0 ° 3 2t ig o © 1
8 18
o & 8 o e 91
5 oo o 1 & o 0 o\ !
0p 0 0 ©©° N i | o8-8 g8 ;
o~ 1 I
o o
1 I
2r ] 1 2F 1 4
1 I
1 i n L L ' | i L i L 1 i L L 1 L .k I
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Smart “predict, then optimize”
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The SPO loss ‘gylon is nonconvex and can sQ}scont:imuous. \
SPO+ los A convex approxim : @'
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Smart “predict, then optimize”

S O S
£ £ N

(Fisher) Consistency of the SPO+ loss function:

Assume c|z is continuous and is symmetric around its mean. Then minimizing
expected SPO+ loss also minimizes expected SPO loss.

fspoy(x) = Elclz] € f5po(w).
N N N
Minimizing the SPO+ loss is equivalent to minimizing the SPO loss.
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S@ose f(x) = Bz, and S = {@w > b} is a polytope. Then‘,\%e regularized
SPO+ ERM Problem is equivalent to the following optimization problem:

X R A
g 3 3S
@ginﬁ Z [—0"p; + 2 (w* @ e B—2*(¢;)] + XUB) @
S < '

i=1 Q
QQ s.t. ATp; = 2Bx; — Cg(\ r o alie{l,...,n} (\Q
\(b pi € R p; > K(&for alli e {1,...,n} \{b




Numerical experiments

\ \) \
We der a shortest-path proble a b x b grid network, Whe& goal is to

g{éom the northwest corner to\'@ southeast corner, and the é@s only go south

or east.

Data generation& ) \9 . \\>
® 1, is d from a multivariate G@@ distribution. @

® ¢ is ated according to «%

The codes: §@ ://github. com/paulgrigas/Sr{ edictThenOptimize @‘
- ~\

&
%@

s
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Q\- ift staffing problem (MS ”'\a company has to staff mu %1&8 for
orkday in the presence of twicertain arrival rates that var roughout the
day and patient qlstomers” that do not abando; the queue while waiting for a \

R\

service, but w ust be served by some pre- ed time.

@S; {lbn C 7’ / - Clb i c2]E [ max <
*'Z><\ s.t. by = b(r _b@fen 1,7 Vs = 1,2,..., S(MSSP)

N O
Pascal M. Notz,_.g‘ r K Wolf, Richard Pibernika \(}%}Prescrlptlve analytics for a mult;%%f

staffing pro@l uropean Journal of Opemtwn@ arch. 305 (2023) 887-901. 0
»\
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100 %
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40 %

Hourly arrival rate relative to maximum
20%

“1

Table 1

Mean arrivals between 9 a.m. and 10 a.m. by weekday with estimated processing rate for 10

Hour

Fig. 1. Average hourly arrival rate by weekday.

servers processing all demand in one day.

Day Jin%of maximum  CV; in%  CVpggon in % 1/JE in% D

Monday 98.9 442 74 19.8 3158.54
Tuesday 78.0 480 83 223 3097.63
Wednesday ~ 88.7 546 78 209 4666.42
Thursday 99.5 487 73 19.7 4083.87
Friday 100.0 485 73 19.7 4059.97
Saturday 16.1 1141 182 48.7 3745.33
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Preﬁ% analytics approaches: ‘*3} “%

ghted SAA O
Kernelized ERM \(b \'{b

° Optlmlzamo@redlctlon approach: which §t only on solving a determl%f

optlmlzafg%’ roblem once and applyin andard machine learning m%;t:l%

to pr@l optimal decision. {}4
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{ Fig. 2. Absolute gap to optimal cost for realistic cost parameters (Percentage num- @ ¢
. bers within the bars represent relative difference to ex-post optimal cost). i\m ‘
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