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Usage of big data

“4V” characteristics of big data:

• Volume: large amount of data.

• Value: low value of data.

• Velocity: fast data processing.

• Variety: different types of data.
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Newsvendor problem

The conventional Newsvendor problem:

min
q≥0

EC(q) := E[C(q;D)],

where

C(q;D) := b(D − q)+ + h(q −D)+.

The optimal decision:

q∗ = inf{y : F (y) ≥ b

b+ h
}.
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Data-driven Newsvendor

Sample Average Approximation (SAA):
(With historical demand data d(n) = [d1, d2, . . . , dn].)

min
q≥0

R̂(q;d(n)) =
1

n

n∑
i=1

[
b (di − q)+ + h (q − di)

+] , (SAA)

The optimal decision:

q̂∗ = inf{y : F̂n(y) ≥
b

b+ h
},

which is the ⌈n b
b+h⌉th largest demand observation.
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SAA

Asymptotic convergence: As the number of data points N → ∞, both the
optimal value zSAA and the optimal solution xSAA converge to the optimal value z∗

and the optimal solution x∗ almost surely.
Tractability: For many cost functions c(x; ξ) and sets X , finding the optimal
value of and an optimal solution SAA is computationally tractable.

But we haven’t considered the “big” data yet.
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The Feature-based Newsvonder

min
q(·)∈Q,{q:X →R}

E[C(q(x);D(x)) | x],

where x is the feature, and the decision is a map from the feature space to the
reals.
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Empirical Risk Minimization

The ERM approach to solving the newsvendor problem with feature data is

min
q(·)∈Q,{q:X →R}

R̂ (q(·);Sn) =
1

n

n∑
i=1

[
b (di − q (xi))

+ + h (q (xi)− di)
+] , (NV − ERM)

where R̂ is called the empirical risk of function q with respect to the data set Sn.
Problem: function class Q ?

⇒ Linear Decision Rule!

Q =

q : X → R : q(x) = q′x =

p∑
j=1

qjxj

 .
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ERM algorithm 1

min
q:q(x)=

∑p
j=1 q

jxj
R̂ (q(·);Sn) =

1

n

n∑
i=1

[
b (di − q (xi))

+ + h (q (xi)− di)
+]

≡ min
q=[q1,...,qp]

1

n

n∑
i=1

(bui + hoi)

s.t. ui ≥ di − q1 −
p∑

j=2

qjxji

oi ≥ q1 +

p∑
j=2

qjxji − di

ui, oi ≥ 0,
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ERM algorithm 2

Add a regularization term:

min
q:q(x)=

∑p
j=1 q

jxj
R̂ (q(·);Sn) + λ∥q∥2k =

1

n

n∑
i=1

[
b (di − q (xi))

+ + h (q (xi)− di)
+]+ λ∥q∥2k

≡ min
q=[q1,...,qp]

1

n

n∑
i=1

(bui + hoi) + λ∥q∥2k

s.t. ui ≥ di − q1 −
p∑

j=2

qjxji

oi ≥ q1 +

p∑
j=2

qjxji − di

ui, oi ≥ 0,
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Kernel Optimization

predictive prescription: Any function q(x) that prescribes a decision in
anticipation of the future given the observation x.

q̃(x) = argmin

n∑
i=1

wn,i(x)C(q, di)

based on Nadaraya-Watson kernel regression

min
q≥0

R̃ (q;Sn,xn+1) = min
q≥0

∑n
i=1Kw (xn+1 − xi)C (q, di)∑n

i=1Kw (xn+1 − xi)

where Kw(·) is a kernel function with bandwidth w.
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Kernel Regression

General regression: Given past data (x1, y1), . . . , (xn, yn), one wants to estimate
the conditional expectation function (CEF): E[Y |X];
In statistics, kernel regression is a non-parametric technique to estimate the
conditional expectation of a random variable. The objective is to find a non-linear
relation between a pair of random variables X and Y .
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Kernel regression

# R code

install.packages("np")

library(np) # non parametric library

data(cps71)

attach(cps71)

m <- npreg(logwage~age)

plot(m, plot.errors.method="asymptotic",

plot.errors.style="band",

ylim=c(11, 15.2))

points(age, logwage, cex=.25)
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Typical kernel functions

• Uniform kernel:

K(u) =
1

2
I(∥u∥2 ≤ 1)

• Gaussian kernel:

K(u) =
1√
2π

exp

(
−∥u∥22

2

)
.

•

Kw(·) := K(·/w)/w

where w is the bandwidth of the kernel.
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NV Kernel Optimization

Proposition.

The optimal feature-based newsvendor decision q̂kn obtained by solving (NV-KO) is
given by

q̂kn = q̂kn(xn+1) = inf

{
q :

∑n
i=1 kiI(di ≤ q)∑n

i=1 ki
≥ b

b+ h

}
(1)

where ki = Kw(xn+1 − xi) and Kw(·) is a kernel function with bandwidth w. In
other words, we can find q̂kn by ranking the past demand in increasing order and
choosing the smallest value at which the inequality in (1) is satisfied.
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Value of feature information

Two population example:
Demand model

D = D0(1− x) +D1x

where D0 and D1 are nonnegative continuous random variables such that the
corresponding critical newsvendor fractiles q∗0 and q∗1 follow q∗0 < q∗1.

We have n historical observations: [(x1, d1), . . . , (xn, dn)], of which n0 = np0 when
x = 0 and n1 = n− n0 when x = 1 (assume rounding effects are negligible).
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Value of feature information

Two population example:

Theorem 1 (Asymptotic Optimality of (NV-ERM1)).

We can show ∣∣E [q̂in]− F−1
0 (r)

∣∣ ≤ O

(
log ni

ni

)
, i = 0, 1

i.e. the finite-sample decision of the feature-based decision is biased by at most
O(log ni/ni), i = 0, 1, and

lim
n→∞

q̂in
a.s.
= F−1

0 (r) =: q∗i , i = 0, 1

i.e. the feature-based decision is asymptotically optimal, correctly identifying the
case when x = 0 or 1 as the number of observations goes to infinity.
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Value of feature information

Two population example:

Theorem 2 (Asymptotic (Sub)Optimality of (SAA)).

The finite-sample bias of the SAA decision is given by

∣∣E [q̂SAA
n

]
− (Fmix)−1(r)

∣∣ ≤ O

(
log n

n

)
we also have∣∣E [q̂SAA

n − q̂0n
]∣∣ = ∣∣∣(Fmix

)−1
(r)− F−1

0 (r)
∣∣∣+O

(
log n

n

)
= O(1)

∣∣E [q̂1n − q̂SAA
n

]∣∣ = ∣∣∣F−1
1 (r)−

(
Fmix

)−1
(r)
∣∣∣+O

(
log n

n

)
= O(1).

That is, on average, if x = 0 in the next decision period, the SAA decision orders
too much, and if x = 1, the SAA decision orders too little. .
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Value of feature information

Linear demand example:
Demand model

D|(X = x) = βTx+ ϵ

where ϵ is independent of the (random) feature vector X, is continuous with
probability density function fϵ(·).
A DM without the feature information only has access to past demand data:
D = {d1, . . . , dn}; and a DM who has both past feature and demand data has the
information: Dx = (x1, d1), . . . , (xn, dn).
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Value of feature information

Linear demand example:

Theorem 3.

Under the linear demand model, given features X = x̃,

q̂SAA
n (x̃)

a.s.→ Qε

(
b

b+ h

)
+ EX [Eε[D | X]]

= Qε

(
b

b+ h

)
+ β⊤E[X]

and

q̂DM2(x̃)
a.s.→ Qε

(
b

b+ h

)
+ β⊤x̃ = q∗(x̃)

as n tends to infinity.
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Bounds

• The first term: generalization error.
Scales as O(p/

√
n), decays

exponentially fast in n.

• The second term: finite sample bias.
The rate n−1/(2+p/2)

√
log n is

optimal.
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Bounds

• The first term: generalization error.
Scales as O(p/(λ

√
n)). λ = O(1/p2)

is a good starting point, because it
gives the same error rate as ERM-1.

• The second term: in-sample decision
resulting from regularization — the
bias resulting from having perturbed
the optimization problem away from
the true problem of interest.

• The third term: finite-sample bias.
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Bounds

• The first term: generalization error.
Scales as O(p/(rw(p)

√
n)), which

can be controlled by the bandwidth
w. Setting w = O(

√
p) gives an error

of O(1/
√
n) which is as good as

demand without features.

• The second term: the bias resulting
from optimizing with a scalar
decision.

• The third term: finite-sample bias.
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Bounds

PSn

[∣∣∣Rtrue (q∗)− R̂ (q̂;Sn)
∣∣∣ ≤ O

(
p
√
log(1/δ)√

n
+

√
log n

n
1

2+p/2

)]
≥ 1− δ

PSn

[∣∣∣Rtrue (q∗)− R̂ (q̂λ;Sn)
∣∣∣ ≤ O

(
p
√

log(1/δ)

λ
√
n

+

√
log n

n
1

2+p/4

+ ED|xn+1
|q̂λ − q̂|

)]
≥ 1− δ

PSn

[∣∣∣Rtrue (q∗)− R̂ (q̂κ;Sn)
∣∣∣ ≤ O

(√
log(1/δ)

rw(p)
√
n

+

√
log n

n
1

2+p/2

+ ED|xn+1
|q̂κ − q̂|

)]
≥ 1− δ
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How to prove such bounds?

Uniform stability:
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How to prove such bounds?

Uniform stability:

• ERM1: αn = D̄(b∨h)2
(b∧h)

p
n .

• ERM2: αr
n = X2

max(b∨h)2
2λ

p
n .

• KO: ακ = D̄(b∨h)2
(b∧h)

1
1+(n−1)rw

, where rw = exp(−2X2
max/w

2).

Bousquet O, Elisseeff A (2002) Stability and generalization. J. Mach.Learn. Res. 2(Mar):499-526.
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Numerical Experiments

Data source: the emergency room of a large teaching hospital in the United
Kingdom from July 2008 to June 2009.

• Optimal staffing levels of nurses for a hospital emergency room.

• Agency nurse v.s. regular nurse.

• Features:

▶ the first set being the day of the week, time of the day, and m number of days of
past demands

▶ the second set being the first set plus the sample average of past demands and
the differences in the order statistics of past demands. (operational statistics
(OS) features.)
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Numerical Experiments
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From predictive to prescriptive analytics

• k−nearest-neighbors (kNN) regression:

q̂kNN
n (x) = argmin

∑
i∈Nk(x)

C(q, di)

where Nk(x) is the neighborhood of the k data points that are close to x.
• local linear regression:

q̂LOESS
n (x) = argmin

n∑
i

ki(x)max

1−
n∑

j=1

kj(x)(x
j − x)⊤Ξ(x)−1(xi − x), 0

C(q, di)
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From predictive to prescriptive analytics

• classification and regression tree (CART):

q̂CART
n (x) = argmin

∑
i:R(xi)=R(x)

C(q, di),

where R(x) is the binning rule implied by a regression tree.

• random forests:

q̂RF
n (x) = argmin

∑
t

1

{j : Rt(xj) = Rt(x)}
∑

i:Rt(xi)=Rt(x)

C(q, di),

where Rt(x) is the binning rule implied by the tth tree in a random forest
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From predictive to prescriptive analytics
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From predictive to prescriptive analytics

Asymptotic optimality:

Theorem.

Under some mild conditions, kNN, Kernel Methods, Local Linear Methods are
asymptotic optimal and consistent.

Although no firm theoretical results on the asymptotic optimality of the predictive
prescriptions based on CART and RF, we have observed them to converge
empirically.
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From predictive to prescriptive analytics

Coefficient of prescriptiveness (in the test set):

P = 1− PredPres− TrueOpt

SAA− TrueOpt

Numerical experiments:
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Smart “predict, then optimize”

Contextual optimization problem:

min
q∈S

E[c⊤q|x]

which is equivalent to (by linearity of expectation)

min
q∈S

E[c|x]⊤q

We need to estimate E[c|x].

Video:
https://www.youtube.com/watch?v=Hot26kyykaI&ab_channel=AdamElmachtoub
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Smart “predict, then optimize”

Standard solution approach “predict, then optimize”:

• 1. Predict parameters using a machine learning model.

• 2. Plug in predictions into optimization model and solve it.

Key gradients:

• 1.Nominal (downstream) optimization problem

P (c) : z∗(c) := min
q∈S

c⊤q.

• 2. Training data: (x1, c1), (x2, c2), . . . , (xn, cn).

• 3. Hypothesis class: ĉ = f(x).

• 4. Loss function: l(ĉ, c).
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Smart “predict, then optimize”

Prediction: Find f∗ using ERM
principal:

min
f

1

N

N∑
i=1

l(f(xi), ci).

Optimization: Given a new x, make
decision

q∗(f∗(x))

For common linear regression (least
squares):

min
β

1

N

N∑
i=1

∥β⊤xi, ci∥2.

Optimization: Given a new x, make
decision

q∗(β∗⊤x)
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Smart “predict, then optimize”

SPO Goal: Minimize decision error rather than prediction error.
SPO Loss function:

lSPO(ĉ, c) := c⊤q∗(ĉ)− c⊤q∗(c).

Then the prediction part becomes:

min
f

1

N

N∑
i=1

lSPO(f(xi), ci).

Recall in big data newsvendor:

min
q

1

N

n∑
i=1

(c⊤i |x)q
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Smart “predict, then optimize”
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An example

Consider a shortest-path problem with two nodes, s and t. There are two edges
that go from s to t, edge 1 and edge 2. Thus the cost vector c is two-dimensional.

Our data consist of (xi, ci) pairs, and ci are generated nonlinearly as a function of
xi.
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An example
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An example
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An example
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Smart “predict, then optimize”

lSPO(ĉ, c) := c⊤w∗(ĉ)− c⊤w∗(c).

The SPO loss function is nonconvex and can be discontinuous.
SPO+ loss function (A convex approximation):

lSPO+(ĉ, c) := max
w∈S

{(c− 2ĉ)⊤w}+ 2ĉ⊤w∗(ĉ)− c⊤w∗(c).

Then lSPO+(·, c) is convex and

lSPO(·, c) ≤ lSPO+(·, c)
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Smart “predict, then optimize”

(Fisher) Consistency of the SPO+ loss function:

Theorem.

Assume c|x is continuous and is symmetric around its mean. Then minimizing
expected SPO+ loss also minimizes expected SPO loss.

f∗
SPO+(x) = E[c|x] ∈ f∗

SPO(x).

Minimizing the SPO+ loss is equivalent to minimizing the SPO loss.
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Reformulation

Suppose f(x) = Bx, and S = {w : Aw ≥ b} is a polytope. Then, the regularized
SPO+ ERM Problem is equivalent to the following optimization problem:

min
B,p

1

n

n∑
i=1

[
−bT pi + 2

(
w∗ (ci)x

T
i

)
•B − z∗ (ci)

]
+ λΩ(B)

s.t. AT pi = 2Bxi − ci for all i ∈ {1, . . . , n}
pi ∈ Rm, pi ≥ 0 for all i ∈ {1, . . . , n}
B ∈ Rd×p.
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Numerical experiments

We consider a shortest-path problem on a 5× 5 grid network, where the goal is to
go from the northwest corner to the southeast corner, and the edges only go south
or east.
Data generation:

• xi is generated from a multivariate Gaussian distribution.

• ci is generated according to

cij =

[(
1
√
p
(B∗xi)j + 3

)deg

+ 1

]
· εji ,

where εji ∈ [1− ε̄, 1 + ε̄].

The codes: https://github.com/paulgrigas/SmartPredictThenOptimize

Runyu Tang SPO: Smart predict then optimize 44 / 52

https://github.com/paulgrigas/SmartPredictThenOptimize


Smart “predict, then optimize”
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Smart “predict, then optimize”

Portfolio optmization problem:
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Applications

Multi-shift staffing problem (MSSP): a company has to staff multiple shifts for
each workday in the presence of uncertain arrival rates that vary throughout the
day and patient “customers” that do not abandon the queue while waiting for a
service, but who must be served by some pre-defined time.

min
b⃗={bs}

C (⃗b) :=
1

τmax

∫ τmax

0
c1bτdτ + c2E [Nτmax ]

s.t. bτ := b(τ) = bs for τ ∈ [τs−1, τs) ∀s = 1, 2, . . . , S, (MSSP)

Pascal M. Notz, Peter K. Wolf, Richard Pibernika (2023) Prescriptive analytics for a multi-shift
staffing problem. European Journal of Operational Research. 305 (2023) 887-901.
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Applications
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Applications

AMSSP:

min
q⃗∈Q

C(q⃗) :=
1

T

S∑
s=1

cq (ts+1 − ts) qs + c2E [NT ]

s.t.Nt = (Nt−1 +Dt − qs)
+, ∀t ∈ [ts, ts+1), ∀s = 1, . . . , S.

Prescriptive analytics approaches:

• Weighted SAA

• Kernelized ERM

• Optimization prediction approach: which relies only on solving a deterministic
optimization problem once and applying a standard machine learning method
to predict optimal decision.
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Applications
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